1)
\frac{1}{2}^{-2}, \\ \frac{1}{2}<1, \\ 2x-3<-2, \\ 2x<1, \\ x<0,5, \\ x \in (-\infty; 0,5)" alt="\frac{1}{2}^{2x-3}>\frac{1}{2}^{-2}, \\ \frac{1}{2}<1, \\ 2x-3<-2, \\ 2x<1, \\ x<0,5, \\ x \in (-\infty; 0,5)" align="absmiddle" class="latex-formula">
3) ![\left \{ {{\sqrt{y} - \sqrt{x}=1,} \atop {y-x-5=0;}} \right. \\ y-x=5, \\ (\sqrt{y} - \sqrt{x})(\sqrt{y} + \sqrt{x})=5, \\ 1\cdot(\sqrt{y} + \sqrt{x})=5, \\ \sqrt{y} + \sqrt{x}=5, \\ \sqrt{y} = 5 - \sqrt{x}, \\ 5 - \sqrt{x} - \sqrt{x} = 1, \\ -2\sqrt{x} = -4, \\ \sqrt{x} = 2, \\ \sqrt{y}=5-2=3, \\ \sqrt{x} - 3\sqrt{y}=2-3\cdot3=-7 \left \{ {{\sqrt{y} - \sqrt{x}=1,} \atop {y-x-5=0;}} \right. \\ y-x=5, \\ (\sqrt{y} - \sqrt{x})(\sqrt{y} + \sqrt{x})=5, \\ 1\cdot(\sqrt{y} + \sqrt{x})=5, \\ \sqrt{y} + \sqrt{x}=5, \\ \sqrt{y} = 5 - \sqrt{x}, \\ 5 - \sqrt{x} - \sqrt{x} = 1, \\ -2\sqrt{x} = -4, \\ \sqrt{x} = 2, \\ \sqrt{y}=5-2=3, \\ \sqrt{x} - 3\sqrt{y}=2-3\cdot3=-7](https://tex.z-dn.net/?f=+%5Cleft+%5C%7B+%7B%7B%5Csqrt%7By%7D+-+%5Csqrt%7Bx%7D%3D1%2C%7D+%5Catop+%7By-x-5%3D0%3B%7D%7D+%5Cright.+%5C%5C+y-x%3D5%2C+%5C%5C+%28%5Csqrt%7By%7D+-+%5Csqrt%7Bx%7D%29%28%5Csqrt%7By%7D+%2B+%5Csqrt%7Bx%7D%29%3D5%2C+%5C%5C+1%5Ccdot%28%5Csqrt%7By%7D+%2B+%5Csqrt%7Bx%7D%29%3D5%2C+%5C%5C+%5Csqrt%7By%7D+%2B+%5Csqrt%7Bx%7D%3D5%2C+%5C%5C+%5Csqrt%7By%7D+%3D+5+-+%5Csqrt%7Bx%7D%2C+%5C%5C+5+-+%5Csqrt%7Bx%7D+-+%5Csqrt%7Bx%7D+%3D+1%2C+%5C%5C+-2%5Csqrt%7Bx%7D+%3D+-4%2C+%5C%5C+%5Csqrt%7Bx%7D+%3D+2%2C+%5C%5C+%5Csqrt%7By%7D%3D5-2%3D3%2C+%5C%5C+%5Csqrt%7Bx%7D+-+3%5Csqrt%7By%7D%3D2-3%5Ccdot3%3D-7+)
4) ![\sqrt{4+2\sqrt3}=\sqrt{1^2+2\sqrt3+(\sqrt3)^2}=\sqrt{(1+\sqrt3)^2}=1+\sqrt3 \sqrt{4+2\sqrt3}=\sqrt{1^2+2\sqrt3+(\sqrt3)^2}=\sqrt{(1+\sqrt3)^2}=1+\sqrt3](https://tex.z-dn.net/?f=%5Csqrt%7B4%2B2%5Csqrt3%7D%3D%5Csqrt%7B1%5E2%2B2%5Csqrt3%2B%28%5Csqrt3%29%5E2%7D%3D%5Csqrt%7B%281%2B%5Csqrt3%29%5E2%7D%3D1%2B%5Csqrt3)
5) ![\frac{x^{-1}-2y^{-1}}{x^{-1}+2y^{-1}}=5^{-1}, \\ \frac{\frac{x^{-1}}{y^{-1}}-2}{\frac{x^{-1}}{y^{-1}}+2}=\frac{1}{5}, \\ 5\frac{x^{-1}}{y^{-1}}-10=\frac{x^{-1}}{y^{-1}}+2, \\ 4\frac{x^{-1}}{y^{-1}}=12, \\ \frac{x^{-1}}{y^{-1}}=3, \\ (\frac{x^{-1}}{y^{-1}})^{-1}=3^{-1}, \\ (\frac{x^{-1}}{y^{-1}})^{-1}=\frac{1}{3} \frac{x^{-1}-2y^{-1}}{x^{-1}+2y^{-1}}=5^{-1}, \\ \frac{\frac{x^{-1}}{y^{-1}}-2}{\frac{x^{-1}}{y^{-1}}+2}=\frac{1}{5}, \\ 5\frac{x^{-1}}{y^{-1}}-10=\frac{x^{-1}}{y^{-1}}+2, \\ 4\frac{x^{-1}}{y^{-1}}=12, \\ \frac{x^{-1}}{y^{-1}}=3, \\ (\frac{x^{-1}}{y^{-1}})^{-1}=3^{-1}, \\ (\frac{x^{-1}}{y^{-1}})^{-1}=\frac{1}{3}](https://tex.z-dn.net/?f=%5Cfrac%7Bx%5E%7B-1%7D-2y%5E%7B-1%7D%7D%7Bx%5E%7B-1%7D%2B2y%5E%7B-1%7D%7D%3D5%5E%7B-1%7D%2C+%5C%5C+%5Cfrac%7B%5Cfrac%7Bx%5E%7B-1%7D%7D%7By%5E%7B-1%7D%7D-2%7D%7B%5Cfrac%7Bx%5E%7B-1%7D%7D%7By%5E%7B-1%7D%7D%2B2%7D%3D%5Cfrac%7B1%7D%7B5%7D%2C+%5C%5C+5%5Cfrac%7Bx%5E%7B-1%7D%7D%7By%5E%7B-1%7D%7D-10%3D%5Cfrac%7Bx%5E%7B-1%7D%7D%7By%5E%7B-1%7D%7D%2B2%2C+%5C%5C+4%5Cfrac%7Bx%5E%7B-1%7D%7D%7By%5E%7B-1%7D%7D%3D12%2C+%5C%5C+%5Cfrac%7Bx%5E%7B-1%7D%7D%7By%5E%7B-1%7D%7D%3D3%2C+%5C%5C+%28%5Cfrac%7Bx%5E%7B-1%7D%7D%7By%5E%7B-1%7D%7D%29%5E%7B-1%7D%3D3%5E%7B-1%7D%2C+%5C%5C+%28%5Cfrac%7Bx%5E%7B-1%7D%7D%7By%5E%7B-1%7D%7D%29%5E%7B-1%7D%3D%5Cfrac%7B1%7D%7B3%7D)
6) S=hc/2,
h^2=8*18+144, h=12,
c=8+18=26,
S=12*26/2=156
7) a - цифра десятков, b - цифра единиц, цифра сотен - 4,
400<400+10a+b<500,</p>
4+a+b=9,
400+10a+b=47/36 (100b+10a+4),
a+b=5,
b=5-a,
400+10a+5-a=47/36 (100(5-a)+10a+4),
405+9a=47/36 (504-90a),
45+a=47/36 (56-10a),
1620+36a=2632-470a,
506a=1012,
a=2,
b=5-2=3,
423
10) V=Sh/3, Sосн=3V/h,
Sт=a²√3/4, a²=4S/√3=4V√3/h,
r=a√3/6, r²=a²/12=V/(h√3),
Sк=πr²=πV/(h√3),
Sк=π300√3/(12√3)=25π