Диагонали равнобедренной трапеции пересекаюся под прямым углом а сумма оснований равна 18...

0 голосов
81 просмотров

Диагонали равнобедренной трапеции пересекаюся под прямым углом а сумма оснований равна 18 см. Найдите площадь трапеции.


Геометрия (74 баллов) | 81 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

Начерти трапецию.Проведи высоту.

 Рассматриваем 2 прямоугольных равнобедренных треугольника - нижний - Н (гипотенузой является нижнее основание) и верхний - В (гипотенузой является верхнее основание). 

Построенный через точку пересечения диагоналей перпендикуляр к основаниям трапеции представляет собой высоту трапеции и равен сумме высот, опущенных на гипотенузу в треугольниках Н и В. Высота треугольника Н равна половине гипотенузы, т.е. половине нижнего основания трапеции (это очевидно, так как углы, прилежащие к гипотенузе равны 45 градусов). Аналогично, высота треугольника В равна половине верхнего основания трапеции. 

Отсюда следует, что высота трапеции равна полусумме верхнего и нижнего оснований трапеции, т.е. ее средней линии. Значит, площадь данной трапеции равна: S = 18/2 * 18/2 = 81 см^2.

(784 баллов)