по формулам синуса двойного угла
![sin^2 (6\alpha)=2sin (3\alpha)cos (3\alpha) sin^2 (6\alpha)=2sin (3\alpha)cos (3\alpha)](https://tex.z-dn.net/?f=sin%5E2+%286%5Calpha%29%3D2sin+%283%5Calpha%29cos+%283%5Calpha%29)
через формулу универсальной тригонометрической подставновки, (через тангенс половинного угла)
![sin^2 (6a\lpha)=(\frac{2tg(3\alpha)}{1+tg^2{3\alpha}})^2=\\ (\frac{4g^2(3\alpha)}{(1+tg^2{3\alpha})^2}) sin^2 (6a\lpha)=(\frac{2tg(3\alpha)}{1+tg^2{3\alpha}})^2=\\ (\frac{4g^2(3\alpha)}{(1+tg^2{3\alpha})^2})](https://tex.z-dn.net/?f=sin%5E2+%286a%5Clpha%29%3D%28%5Cfrac%7B2tg%283%5Calpha%29%7D%7B1%2Btg%5E2%7B3%5Calpha%7D%7D%29%5E2%3D%5C%5C+%28%5Cfrac%7B4g%5E2%283%5Calpha%29%7D%7B%281%2Btg%5E2%7B3%5Calpha%7D%29%5E2%7D%29)
по формуле понижения степени
![sin^2 (6\alpha)=\frac{1-cos (12\alpha)}{2} sin^2 (6\alpha)=\frac{1-cos (12\alpha)}{2}](https://tex.z-dn.net/?f=sin%5E2+%286%5Calpha%29%3D%5Cfrac%7B1-cos+%2812%5Calpha%29%7D%7B2%7D)
по формуле понижения степении и формула косинуса разности
![cos^2 (8\alpha-\frac{\pi}{8})=\frac{1+cos(16\alpha-\frac{\pi}{4})}{2}=\\ \frac{1+cos(16\alpha)cos\frac{\pi}{4}-sin(16\alpha)sin(\pi){4}}{2}=\\ \frac{1+cos(16\alpha)\frac{\sqrt{2}}{2}-sin(16\alpha)\frac{\sqrt{2}}{2}}{2}=\\ \frac{1+\frac{\sqrt{2}}{2}(cos(16\alpha)-sin(16\alpha)}{2}=\\ \frac{2+\sqrt{2}(cos(16\alpha)-sin(16\alpha)}{4} cos^2 (8\alpha-\frac{\pi}{8})=\frac{1+cos(16\alpha-\frac{\pi}{4})}{2}=\\ \frac{1+cos(16\alpha)cos\frac{\pi}{4}-sin(16\alpha)sin(\pi){4}}{2}=\\ \frac{1+cos(16\alpha)\frac{\sqrt{2}}{2}-sin(16\alpha)\frac{\sqrt{2}}{2}}{2}=\\ \frac{1+\frac{\sqrt{2}}{2}(cos(16\alpha)-sin(16\alpha)}{2}=\\ \frac{2+\sqrt{2}(cos(16\alpha)-sin(16\alpha)}{4}](https://tex.z-dn.net/?f=cos%5E2+%288%5Calpha-%5Cfrac%7B%5Cpi%7D%7B8%7D%29%3D%5Cfrac%7B1%2Bcos%2816%5Calpha-%5Cfrac%7B%5Cpi%7D%7B4%7D%29%7D%7B2%7D%3D%5C%5C+%5Cfrac%7B1%2Bcos%2816%5Calpha%29cos%5Cfrac%7B%5Cpi%7D%7B4%7D-sin%2816%5Calpha%29sin%28%5Cpi%29%7B4%7D%7D%7B2%7D%3D%5C%5C+%5Cfrac%7B1%2Bcos%2816%5Calpha%29%5Cfrac%7B%5Csqrt%7B2%7D%7D%7B2%7D-sin%2816%5Calpha%29%5Cfrac%7B%5Csqrt%7B2%7D%7D%7B2%7D%7D%7B2%7D%3D%5C%5C+%5Cfrac%7B1%2B%5Cfrac%7B%5Csqrt%7B2%7D%7D%7B2%7D%28cos%2816%5Calpha%29-sin%2816%5Calpha%29%7D%7B2%7D%3D%5C%5C+%5Cfrac%7B2%2B%5Csqrt%7B2%7D%28cos%2816%5Calpha%29-sin%2816%5Calpha%29%7D%7B4%7D)
по формуле универсальной подставновки (через тангенс половинного аргумента)
![cos^2 (8\alpha-\frac{\pi}{8})=(\frac{1-tg^2 (4\alpha-\frac{\pi}{16})}{1+tg^2 (4\alpha-\frac{\pi}{16})})^2 cos^2 (8\alpha-\frac{\pi}{8})=(\frac{1-tg^2 (4\alpha-\frac{\pi}{16})}{1+tg^2 (4\alpha-\frac{\pi}{16})})^2](https://tex.z-dn.net/?f=cos%5E2+%288%5Calpha-%5Cfrac%7B%5Cpi%7D%7B8%7D%29%3D%28%5Cfrac%7B1-tg%5E2+%284%5Calpha-%5Cfrac%7B%5Cpi%7D%7B16%7D%29%7D%7B1%2Btg%5E2+%284%5Calpha-%5Cfrac%7B%5Cpi%7D%7B16%7D%29%7D%29%5E2)
по формуле универсальной подставновки (через тангенс половинного аргумента)
![tg^2 (10\alpha)=(\frac{2tg (5\alpha)}{1-tg^2 (5\alpha)})^2=\frac{4tg^2 (5\alpha)}{(1-tg^2 (5\alpha))^2} tg^2 (10\alpha)=(\frac{2tg (5\alpha)}{1-tg^2 (5\alpha)})^2=\frac{4tg^2 (5\alpha)}{(1-tg^2 (5\alpha))^2}](https://tex.z-dn.net/?f=tg%5E2+%2810%5Calpha%29%3D%28%5Cfrac%7B2tg+%285%5Calpha%29%7D%7B1-tg%5E2+%285%5Calpha%29%7D%29%5E2%3D%5Cfrac%7B4tg%5E2+%285%5Calpha%29%7D%7B%281-tg%5E2+%285%5Calpha%29%29%5E2%7D)