![17^{8x^2+2x}=e^{ln 17};\\ 17^{8x^2+2x}=17;\\ 17^{8x^2+2x}=17^1;\\ 8x^2+2x=1;\\ 8x^2+2x-1=0;\\ D=2^2-4*8*(-1)=36=6^2;\\ x_1=\frac{-2+6}{2*8}=0.25;\\ x_2=\frac{-2-6}{2*8}=-0.5;\\ 17^{8x^2+2x}=e^{ln 17};\\ 17^{8x^2+2x}=17;\\ 17^{8x^2+2x}=17^1;\\ 8x^2+2x=1;\\ 8x^2+2x-1=0;\\ D=2^2-4*8*(-1)=36=6^2;\\ x_1=\frac{-2+6}{2*8}=0.25;\\ x_2=\frac{-2-6}{2*8}=-0.5;\\](https://tex.z-dn.net/?f=17%5E%7B8x%5E2%2B2x%7D%3De%5E%7Bln+17%7D%3B%5C%5C+17%5E%7B8x%5E2%2B2x%7D%3D17%3B%5C%5C+17%5E%7B8x%5E2%2B2x%7D%3D17%5E1%3B%5C%5C+8x%5E2%2B2x%3D1%3B%5C%5C+8x%5E2%2B2x-1%3D0%3B%5C%5C+D%3D2%5E2-4%2A8%2A%28-1%29%3D36%3D6%5E2%3B%5C%5C+x_1%3D%5Cfrac%7B-2%2B6%7D%7B2%2A8%7D%3D0.25%3B%5C%5C+x_2%3D%5Cfrac%7B-2-6%7D%7B2%2A8%7D%3D-0.5%3B%5C%5C+)
ответ: -0.5;0.25
![\left \{ {{1<2x-1<9;} \atop {-1 \leq 1-x \leq 4}} \right; \\ \left \{ {{1+1<2x<9+1;} \atop {-1-1 \leq -x \leq 4-1}} \right.;\\ \left \{ {{2<2x<10;} \atop {-2 \leq -x \leq 3}} \right.;\\ \left \{ {{1<x<5;} \atop {-3 \leq x \leq 2}} \right.;\\ 1<x \leq 2 \left \{ {{1<2x-1<9;} \atop {-1 \leq 1-x \leq 4}} \right; \\ \left \{ {{1+1<2x<9+1;} \atop {-1-1 \leq -x \leq 4-1}} \right.;\\ \left \{ {{2<2x<10;} \atop {-2 \leq -x \leq 3}} \right.;\\ \left \{ {{1<x<5;} \atop {-3 \leq x \leq 2}} \right.;\\ 1<x \leq 2](https://tex.z-dn.net/?f=%5Cleft+%5C%7B+%7B%7B1%3C2x-1%3C9%3B%7D+%5Catop+%7B-1+%5Cleq+1-x+%5Cleq+4%7D%7D+%5Cright%3B+%5C%5C+%5Cleft+%5C%7B+%7B%7B1%2B1%3C2x%3C9%2B1%3B%7D+%5Catop+%7B-1-1+%5Cleq+-x+%5Cleq+4-1%7D%7D+%5Cright.%3B%5C%5C+%5Cleft+%5C%7B+%7B%7B2%3C2x%3C10%3B%7D+%5Catop+%7B-2+%5Cleq+-x+%5Cleq+3%7D%7D+%5Cright.%3B%5C%5C+%5Cleft+%5C%7B+%7B%7B1%3Cx%3C5%3B%7D+%5Catop+%7B-3+%5Cleq+x+%5Cleq+2%7D%7D+%5Cright.%3B%5C%5C+1%3Cx+%5Cleq+2)
ответ: (1;2]
125;} \atop {x^2-10x \leq 24} \right;\\ \left \{ {{5^{4x-1}>5^3;} \atop {x^2-10x -24 \leq 0} \right;\\ \left \{ {{4x-1>3;} \atop {(x+2)(x-12) \leq 0} \right;\\ \left \{ {{4x>4;} \atop {-2 \leq x \leq 12} \right;\\ \left \{ {{x>1;} \atop {-2 \leq x \leq 12} \right;\\ \left \{ {{1125;} \atop {x^2-10x \leq 24} \right;\\ \left \{ {{5^{4x-1}>5^3;} \atop {x^2-10x -24 \leq 0} \right;\\ \left \{ {{4x-1>3;} \atop {(x+2)(x-12) \leq 0} \right;\\ \left \{ {{4x>4;} \atop {-2 \leq x \leq 12} \right;\\ \left \{ {{x>1;} \atop {-2 \leq x \leq 12} \right;\\ \left \{ {{1
ответ: (1;12]
подкоренное выражение неотрицательно, знаменталь не равен 0
0;\\ x^2-16<0;\\ (x-4)(x+4)<0;\\ -4<x<4" alt="16-x^2>0;\\ x^2-16<0;\\ (x-4)(x+4)<0;\\ -4<x<4" align="absmiddle" class="latex-formula">
ответ: (-4;4)