Функция возрастает на всей числовой оси (-беск; +беск).
График этой функции обычная прямая вида: у=kx+b.
Доказать возрастание можно оч. просто:
Возьмем x1 и х2 такие, что x2>x1
Подставим их в исходную функцию:
у(х1)=3/2*х1+19/2
у(х2)=3/2*х2+19/2
Очевидно, что при таким образом заданных х1 и х2 выолняется след. неравенство:
3/2*х1 < 3/2*х1</p>
а следовательно выполняется и неравенство:
3/2*х1+19/2 < 3/2*х2+19/2, что то же самое, что и : у(х1) < у(х2).</p>
Поскольку х1 и х2 были выбраны произвольно, то это такое неравенство выполняется для любого х, следовательно функция возрастает на всей числовой оси.
Исходя из этого сравиниваем:
f(-конень из 3)
Конец:)