Цитата: "центр О вписанной окружности равноудалён от всех сторон и является точкой пересечения биссектрис треугольника. В равнобедренном треугольнике высота, опущенная на основание, является и биссектрисой и медианой. Значит центр О вписанной окружности лежит на высоте. Тогда радиус вписанной окружности является катетом прямоугольного треугольника, вторым катетом которого является половина основания. Пусть R = половине основания, тогда прямоугольный тр-к будет равнобедренным и половина угла при основании будет равна 45°. Угол при основании тогда =90°, что невозможно. Итак, радиус не может быть равен половине основания, значит и диаметр впмсанной окружности всегда меньше основания данного нам равнобедренного тр-ка, что и требовалось доказать..