Пусть АВ = ВС = CD = а.
Проведем высоты ВН и СК.
ВНКС - прямоугольник (ВН = СК как высоты трапеции, ВН ║ СК как перпендикуляры к одной прямой), ⇒
НК = ВС = а.
ΔАВН = ΔDCK по гипотенузе и катету, значит АН = DK = a/2
ΔCDK: ∠K = 90°, катет равен половине гипотенузы, значит ∠DCK = 30°, а ∠CDK = 60°