2cos4x-cos^3x=2-16cos^2x
cos (4x) = 1 - 8cos^2(x) + 8cos^4(x)
2(1 - 8cos^2(x) + 8cos^4(x))-cos^3x=2-16cos^2x
2 - 16cos^2(x) + 16cos^4(x)-cos^3x=2-16cos^2x
16cos^4(x)-cos^3x=0
(16cos(x)-1)cos^3x=0
cos(x)=0 или cos(x)=1/16
x=pi/2+pi*k или х=+/- arccos(1/16) + 2*pi*k