1 tg(x/2)=a => Va =>Va!=1/(2Va) tgx/2!=1/cos^2x/2*1/2=1/2cos^2(x/2)=>
tg(x/2)!=1/(Vtgx/2)*1/(2V2cosx/2)
3) ln^4(sinx)!=4ln^3(sinx)*1/sinx*cosx
4)x*4^x!=1*4^x+x*4^x*ln4
5)e^Vlnx)!=e^vlnx*1/(2vlnx)*1/x
6)(sin1/x)!=cos1/x*(-1/x^2)=-cos1/x/(x^2)
7) V(x^2+1)/x!=(v(x^2+1))!*x-x!*V(x^2+1)/x^2=(1/2V(x^2+1)*2x*x-V(x^2+1)/x^2=
(x^2/(v(x^2+1)-v(x^2+1))/x^2=x^2-(v(x^2+1)^2/((vx^2+1)*x^2)=-1/(x^2*v(x^2+1)
v-корень
2) (1-vx)/(1+vx)!=(1-vx)!*(1+vx)-(1-vx)*(1+vx)!/((1+vx)^2=(-1/2x*(1+vx)-(1-vx)*vx/2)/(1+vx)^2
=1/(2vx)*(-1-vx-1+vx)/(1+vx)^2=(-2/2vx)/(1+vx)^2=-1/(vx*(1+vx)^2)
cos^2(y)=2cosy(-siny)=-sin2y где у=(1-vx)/(1+vx)=>
cos^2((1-vx)/(1+vx))=-sin((1-vx)/(1+vx)*(-1/(vx(1+vx)^2=1/(vx(1+vx)^2)*sin(1-vx)/(1+vx)