А)f(x)=9x³+13x-12x²+4;⇒f¹(x)=27x²+13-24x;
б)h(x)=(2x-5)/7x;⇒
h¹(x)=(2·7x-7(2x-5)/49x²=(14x-14x+35)/49x²=5/7x²;
h¹(1)=5/7;h¹(2)=5/7·4=5/28;
в)U(x)=(5-3x)⁶;⇒U¹(x)=6·(-3)·(5-3x)⁵=-18(5-3x)⁵;
г)g(x)=(15x²-7)·(2-3x);⇒
g¹(x)=30x·(2-3x)+(15x²-7)·(-3)=60x-90x²-45x²+21=-135x²+60x+21;
д)f(x)=7cos3x;⇒f¹(x)=7·3·(-sin3x)=-21sin3x;
f¹(π/2)=-21·sin(3π/2)=(-21)·(-1)=21