1)ОДЗ
32-2x²>0⇒2(4-x)(x+4)>0⇒-46-x>0⇒x<6<br>x+5>0⇒x>-5
x∈(-4;4)
log(3)(32-2x²)-log(3)(6-x)-log(3)(x+5)=0
log(3)(32-2x²)/(6-x)(x+5)=0
(32-2x²)/(6-x)(x+5)=1
32-2x²=(6-x)(x+5)
6x+30-x²-5x-32+2x²=0
x²+x-2=0
x1+x2=-1 U x1*x2=-2
x1=-2 U x2=1
2)ОДз
8-x>0⇒x<8<br>32-4x>0⇒4x<32⇒x<8<br>x+4>0⇒x>-4
x∈(-4;8)
lg(32-4x)-lg(x+4)-lg(8-x)=0
lg4(8-x)/(8-x)(x+4)=0
4/(x+4)=1
x+4=4
x=4-4
x=0