** стадионе с длиной беговой дорожки 400 метров одновременно стартовали два атлета. Их...

0 голосов
119 просмотров

На стадионе с длиной беговой дорожки 400 метров одновременно стартовали два атлета. Их скорости движения постоянны и равны соответственно V1=4м/с и V2=6м/с. Найдите через какой промежуток времени бегуны встретятся снова, какое расстояние каждый из них пробежит к моменту встречи. Рассмотреть случаи, когда они бегут в одном направлении и в противоположных направлениях.


Физика (128 баллов) | 119 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

Пусть они бегут в одну сторону.
l = 400 м
Первый бегун пробежал тогда: lk + lλ = v₁t, где 0 ≤ λ ≤ 1, k∈|Ν.
Второй соответственно пробежит lm+lλ = v₂t. m∈|Ν.
Какой смысл этих уравнений: в момент встречи оба бегуна должны встретится в одной точке, которая характеризуется расстоянием до старта
0 ≤ r < l. r ≡ lλ. При этом каждый из них может пробежать разное число целых кругов.
Теперь составим разность этих уравнений и обозначим s = m-k
Тогда, ls = (v₂ - v₁)t, преобразуя получим:
t = \frac{ls}{v_2-v_1}, где s - любое неотрицательное целое число.
Из данного выражения умножая на скорость каждого бегуна можно получить соответствующее расстояние.

Теперь случай, когда они бегут в разные стороны.
Точка встречи по прежнему характеризуется расcтоянием r = λl, причём оно будет измеряться по ходу движения первого бегуна. 
Т.е. уравнение для первого будет:
lk + lλ = v₁t
А для второго:
lm + l(1-λ) = v₂t
Сложим их и получим: t = \frac{ld}{v_1+v_2},
где d = m+k+1 - любое натуральное число.
Видно, что при d = 1 мы получили обычною формулу для встречного движения.

P.S. Данное решение проведено не совсем формально. Было бы правильнее задать криволинейную ось по стадиону и учитывать знаки скоростей в проекцию на неё, а вместо пути писать координату на ней, но для большей наглядности мы рассматривали модули величин, сразу учитывая, какая скорость больше.


(3.5k баллов)