Знайти точки екстремума функції y = 1/3 x3 – x2

0 голосов
107 просмотров

Знайти точки екстремума функції y = 1/3 x3 – x2


Алгебра (229 баллов) | 107 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

Y =  (1/3)*(x^3) -(x^2)
Находим первую производную:
f'(x) = x2-2x
или
f'(x) = x(x-2)
Находим нули функции. Для этого приравниваем производную к нулю
x(x-2) = 0
Откуда:
x1 = 0
x2 = 2
На промежутке (-∞ ;0)  f'(x) > 0 -  функция возрастает; 
 На промежутке    (0; 2)    f'(x) < 0 функция убывает;
На промежутке  (2; +∞)    f'(x) > 0 функция возрастает.
В окрестности точки x = 0 производная функции меняет знак с (+) на (-). Следовательно, точка x = 0 - точка максимума.
 В окрестности точки x = 2 производная функции меняет знак с (-) на (+). Следовательно, точка x = 2 - точка минимума.

(61.9k баллов)