![image](https://tex.z-dn.net/?f=9%5E%7Blog_%7B%5Cfrac%7B1%7D%7B9%7D%7Dlog_5x%5E2%7D%3C5%5E%7Blog_%7B%5Cfrac%7B1%7D%7B5%7D%7Dlog_9x%5E2%7D%5C%3B+%2C%5C%5C%5C%5C9%5E%7B-log_9log_5x%5E2%7D%3C5%5E%7B-log_5log_9x%5E2%7D%5C%5C%5C%5C9%5E%7Blog_9%28log_5x%5E2%29%5E%7B-1%7D%7D%3C5%5E%7Blog_5%28log_9x%5E2%29%5E%7B-1%7D%7D%5C%5C%5C%5C%5Cfrac%7B1%7D%7Blog_5x%5E2%7D%3C%5Cfrac%7B1%7D%7Blog_9x%5E2%7D%5C%5C%5C%5C%5Cfrac%7B1%7D%7B2log_5%7Cx%7C%7D%3C%5Cfrac%7B1%7D%7B2log_9%7Cx%7C%7D%5C%5C%5C%5Clog_5%7Cx%7C%3Elog_9%7Cx%7C%5C%5C%5C%5C%5Cfrac%7Blg%7Cx%7C%7D%7Blg5%7D%3E%5Cfrac%7Blg%7Cx%7C%7D%7Blg9%7D%5C%5C%5C%5C%5Cfrac%7Blg%7Cx%7C%7D%7Blg5%7D-%5Cfrac%7Blg%7Cx%7C%7D%7Blg9%7D%3E0%5C%5C%5C%5C%5Cfrac%7Blg%7Cx%7C%28lg9-lg5%29%7D%7Blg9%5Ccdot+lg5%7D)
log_9|x|\\\\\frac{lg|x|}{lg5}>\frac{lg|x|}{lg9}\\\\\frac{lg|x|}{lg5}-\frac{lg|x|}{lg9}>0\\\\\frac{lg|x|(lg9-lg5)}{lg9\cdot lg5}" alt="9^{log_{\frac{1}{9}}log_5x^2}<5^{log_{\frac{1}{5}}log_9x^2}\; ,\\\\9^{-log_9log_5x^2}<5^{-log_5log_9x^2}\\\\9^{log_9(log_5x^2)^{-1}}<5^{log_5(log_9x^2)^{-1}}\\\\\frac{1}{log_5x^2}<\frac{1}{log_9x^2}\\\\\frac{1}{2log_5|x|}<\frac{1}{2log_9|x|}\\\\log_5|x|>log_9|x|\\\\\frac{lg|x|}{lg5}>\frac{lg|x|}{lg9}\\\\\frac{lg|x|}{lg5}-\frac{lg|x|}{lg9}>0\\\\\frac{lg|x|(lg9-lg5)}{lg9\cdot lg5}" align="absmiddle" class="latex-formula">
Знаменатель дроби > 0, (lg9-lg5)>0, значит lg|x|>0
|x|>1 ---> x>1 или x<-1<br>Oтвет: хЄ(-беск, -1)U(1,+беск)