x=t^2;\\
2t^2-t-1=0;\\
D=(-1)^2-4\cdot2\cdot(-1)=1+8=9=(\pm3);\\
t_1=\frac{1-3}{2\cdot2}=\frac{-2}{4}=-\frac12;\\
t_2=\frac{1+3}{2\cdot2}=\frac44=1;\\
2t^2-t-1=2(t+\frac12)(t-1)=(2t+1)(t-1);\\
2x-\sqrt{x}-1=(2\sqrt{x}+1)(\sqrt{x}-1)" alt="2x-\sqrt{x}-1\\
\sqrt{x}=t,==>x=t^2;\\
2t^2-t-1=0;\\
D=(-1)^2-4\cdot2\cdot(-1)=1+8=9=(\pm3);\\
t_1=\frac{1-3}{2\cdot2}=\frac{-2}{4}=-\frac12;\\
t_2=\frac{1+3}{2\cdot2}=\frac44=1;\\
2t^2-t-1=2(t+\frac12)(t-1)=(2t+1)(t-1);\\
2x-\sqrt{x}-1=(2\sqrt{x}+1)(\sqrt{x}-1)" align="absmiddle" class="latex-formula">