Придумайте 2 задачи,тяжелые.Про мощность и работу,с решением. Спасибо

0 голосов
30 просмотров

Придумайте 2 задачи,тяжелые.Про мощность и работу,с решением. Спасибо


Физика (18 баллов) | 30 просмотров
Дан 1 ответ
0 голосов

Две бригады должны были выполнить заказ за 12 дней. После 8 дней совместной работы первая бригада получила другое задание, поэтому вторая бригада заканчивала выполнение заказа еще 7 дней. За сколько дней могла бы выполнить заказ каждая из бригад, работая отдельно.

 

Р е ш е н и е. Пусть первая бригада выполняет задание за х дней, вторая бригада – за у дней. Примем всю работу за единицу. Тогда 1/х – производительность первой бригады, а 1/у – второй. Так как две бригады должны выполнить заказ за 12 дней, то получим первое уравнение

12(1/х+ 1/у)=1

Из второго условия следует, что вторая бригада работала 15 дней, а первая - только 8 дней. Значит, второе уравнение имеет вид

8/х+15/у=1

Таким образом, имеем систему: 12/x+12/y=1, 8/x+15/y=1

Вычтем из второго уравнения первое, получим: 21/у=1 ? у=21. Тогда 12/х+12/21=1 ? 12/х=3/7 ? х=28.

О т в е т: за 28 дней выполнит заказ первая бригада, за 21 день – вторая.

В бассейн проведены две трубы – подающая и отводящая, причем через первую трубу бассейн наполняется на 2 ч дольше, чем через вторую вода из бассейна выливается. При заполненном на одну треть бассейне были открыты обе трубы, и бассейн оказался пустым спустя 8 ч. За сколько часов через одну первую трубу может наполниться бассейн, и за сколько времени через одну вторую трубу может осушиться полный бассейн?

Р е ш е н и е: Пусть V м3 – объем бассейна, х м3 /ч – производительность подающей трубы, у м3 /ч - отводящей. Тогда V/x ч – время, необходимое подающей трубе для заполнения бассейна, V/у ч – время, необходимое отводящей на осушение бассейна. По условию задачи

V/x- V/у=2.

Так как производительность отводящей трубы больше производительности наполняющей, то при включенных обеих трубах будет происходить осушение бассейна и одна треть бассейна осушится за время (V/3)(у-х), которое по условию задачи равно 8 ч. Итак, условие задачи может быть записано в виде системы двух уравнений с тремя неизвестными:

В задаче необходимо найти V/х и V/у. Выделим в уравнениях комбинацию неизвестных V/х и V/у, записав систему в виде: V/x-V/y=2, V/(y-x)=24 или V/x-V/y=2, y/V-x/V=1/24

Вводя новые неизвестные V/х=а и V/у=b, получаем следующую систему: a-b=2, 1/b-1/a=1/24

Подставляя во второе уравнение выражение a=b+2, имеем уравнение относительно b:   1/b-1/(b+2)=1/24

решив которое найдем b1=6, b2=-8. Условию задачи удовлетворяют первый корень b1=6(ч). Из первого уравнения последней системы находим а=8(ч), т.е. первая труба наполняет бассейн за 8ч.

О т в е т: через первую трубу бассейн наполнится через 8 ч, через вторую трубу бассейн осушится через 6 ч.

(94 баллов)
0

сойдёт ?

0

нормал