Один из катетов прямоугольного треугольника равен 15, а проекция другого катета **...

0 голосов
73 просмотров

Один из катетов прямоугольного треугольника равен 15, а проекция другого катета на гипотенузу 16. Найти радиус окружности, вписанной в этот треугольник.


Геометрия (20 баллов) | 73 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

Пусть проекция первого катета на гипотенузу равна х, тогда гипотенуза равна х+16.

Квадрат катета равен произведению гипотенузы на его проекцию на гипотенузы.

х(х+16)=15^2

x^2+16x-225=0

D=256+900=1156

x1=(-16-34)/2<0 - не подходит, длина отрезка не может быть отрицательным числом</p>

х2=(-16+34)/2=9

 

Гипотенуза равна 9+16=25

Второй катет равен корень(25*16)=5*4=20

 

Радиус окружности, вписанной в прямоугольной треугольник равен

к=(a+b-c)/2.

a=15,b=20, c=25

r=(15+20-25)/2=5

ответ: 5

(409k баллов)