![image](https://tex.z-dn.net/?f=%5Cleft%28%5Clog_2x%5Cright%29%5E2-2%5Clog_2x-3%5Cgeq0%3B%5C%5C%0AD%28f%29%3A%5C+x%3E0%3D%3D%3Ex%5Cin%280%3B%2B%5Cinfty%29%3B%5C%5C%0At%3D%5Clog_2x%3B%5C%5C%0Ax%3D2%5Et%3B%5C%5C%0At%5E2-2t-3%3D0%3B%5C%5C%0AD%3D%28-2%29%5E2%2B4%5Ccdot1%5Ccdot%28-3%29%3D4%2B12%3D16%3D%28%5Cpm4%29%5E2%3B%5C%5C%0At_1%3D%5Cfrac%7B2-4%7D%7B2%7D%3D-%5Cfrac22%3D-1%3B%5C+x%3D2%5E%7B-1%7D%3D%5Cfrac12%3B%5C%5C%0At_2%3D%5Cfrac%7B2%2B4%7D%7B2%7D%3D%5Cfrac%7B6%7D%7B2%7D%3D3%3B%5C+x%3D2%5E3%3D8%3B%5C%5C%0At%5E2-2t-3%5Cgeq0%3D%3D%3Et%5Cin%28-%5Cinfty%3B-1%5D%5Ccup%5B3%3B%2B%5Cinfty%29%3B%5C%5C%0A%5Cleft%28%5Clog_2x%5Cright%29%5E2-2%5Clog_2x-3%5Cgeq0%3D%3D%3Ex%5Cin%280%3B%5Cfrac12%5D%5Ccup%5B8%3B%2B%5Cinfty%29.)
0==>x\in(0;+\infty);\\
t=\log_2x;\\
x=2^t;\\
t^2-2t-3=0;\\
D=(-2)^2+4\cdot1\cdot(-3)=4+12=16=(\pm4)^2;\\
t_1=\frac{2-4}{2}=-\frac22=-1;\ x=2^{-1}=\frac12;\\
t_2=\frac{2+4}{2}=\frac{6}{2}=3;\ x=2^3=8;\\
t^2-2t-3\geq0==>t\in(-\infty;-1]\cup[3;+\infty);\\
\left(\log_2x\right)^2-2\log_2x-3\geq0==>x\in(0;\frac12]\cup[8;+\infty)." alt="\left(\log_2x\right)^2-2\log_2x-3\geq0;\\
D(f):\ x>0==>x\in(0;+\infty);\\
t=\log_2x;\\
x=2^t;\\
t^2-2t-3=0;\\
D=(-2)^2+4\cdot1\cdot(-3)=4+12=16=(\pm4)^2;\\
t_1=\frac{2-4}{2}=-\frac22=-1;\ x=2^{-1}=\frac12;\\
t_2=\frac{2+4}{2}=\frac{6}{2}=3;\ x=2^3=8;\\
t^2-2t-3\geq0==>t\in(-\infty;-1]\cup[3;+\infty);\\
\left(\log_2x\right)^2-2\log_2x-3\geq0==>x\in(0;\frac12]\cup[8;+\infty)." align="absmiddle" class="latex-formula">
Ответ: