![image](https://tex.z-dn.net/?f=1%29%5C%3B+2log_2x%2Blog_%7B%5Csqrt2%7Dx%2Blog_%7B%5Cfrac%7B1%7D%7B2%7D%7Dx%3D9%5C%3B+%2C%5C%3B+%5C%3B+ODZ%3A%5C%3B+x%3E0%5C%5C%5C%5C2log_2x%2B2log_2x-log_2x%3D9%5C%5C%5C%5C3log_2x%3D9%5C%5C%5C%5Clog_2x%3D3%5C%5C%5C%5Cx%3D2%5E3%3D8)
0\\\\2log_2x+2log_2x-log_2x=9\\\\3log_2x=9\\\\log_2x=3\\\\x=2^3=8" alt="1)\; 2log_2x+log_{\sqrt2}x+log_{\frac{1}{2}}x=9\; ,\; \; ODZ:\; x>0\\\\2log_2x+2log_2x-log_2x=9\\\\3log_2x=9\\\\log_2x=3\\\\x=2^3=8" align="absmiddle" class="latex-formula">
![image](https://tex.z-dn.net/?f=2%29lg%28x%2B6%29-%5Cfrac%7B1%7D%7B2%7Dlg%282x-3%29%3D2-lg25%5C%3B+%2C%5C%5C%5C%5CODZ%3A%5C%3B++%5Cleft+%5C%7B+%7B%7Bx%2B6%3E0%7D+%5Catop+%7B2x-3%3E0%7D%7D+%5Cright.+%5C%3B+%2C%5C%3B++%5Cleft+%5C%7B+%7B%7Bx%3E-6%7D+%5Catop+%7Bx%3E%5Cfrac%7B3%7D%7B2%7D%7D%7D+%5Cright.+%5C%3B+%5Cto+%5C%3B+x%3E%5Cfrac%7B3%7D%7B2%7D%5C%5C%5C%5Clg%28x%2B6%29-lg%5Csqrt%7B2x-3%7D%3Dlg10%5E2-lg25%5C%5C%5C%5Clg%28x%2B6%29%3Dlg%5Csqrt%7B2x-3%7D%2Blg%5Cfrac%7B100%7D%7B25%7D%5C%5C%5C%5Clg%28x%2B6%29%3Dlg%5Csqrt%7B2x-3%7D%2Blg4%5C%5C%5C%5Cx%2B6%3D4%5Csqrt%7B2x-3%7D%5C%5C%5C%5C16%282x-3%29%3Dx%5E2%2B12x%2B36%5C%5C%5C%5Cx%5E2-20x%2B84%3D0%5C%5C%5C%5Cx_1%3D6%2C%5C%3B+x_2%3D14%5C%3B+%28teor.%5C%3B+Vieta%29%5C%5C%5C%5COtvet%3A%5C%3B+6%2C%5C%3B+14.)
0} \atop {2x-3>0}} \right. \; ,\; \left \{ {{x>-6} \atop {x>\frac{3}{2}}} \right. \; \to \; x>\frac{3}{2}\\\\lg(x+6)-lg\sqrt{2x-3}=lg10^2-lg25\\\\lg(x+6)=lg\sqrt{2x-3}+lg\frac{100}{25}\\\\lg(x+6)=lg\sqrt{2x-3}+lg4\\\\x+6=4\sqrt{2x-3}\\\\16(2x-3)=x^2+12x+36\\\\x^2-20x+84=0\\\\x_1=6,\; x_2=14\; (teor.\; Vieta)\\\\Otvet:\; 6,\; 14." alt="2)lg(x+6)-\frac{1}{2}lg(2x-3)=2-lg25\; ,\\\\ODZ:\; \left \{ {{x+6>0} \atop {2x-3>0}} \right. \; ,\; \left \{ {{x>-6} \atop {x>\frac{3}{2}}} \right. \; \to \; x>\frac{3}{2}\\\\lg(x+6)-lg\sqrt{2x-3}=lg10^2-lg25\\\\lg(x+6)=lg\sqrt{2x-3}+lg\frac{100}{25}\\\\lg(x+6)=lg\sqrt{2x-3}+lg4\\\\x+6=4\sqrt{2x-3}\\\\16(2x-3)=x^2+12x+36\\\\x^2-20x+84=0\\\\x_1=6,\; x_2=14\; (teor.\; Vieta)\\\\Otvet:\; 6,\; 14." align="absmiddle" class="latex-formula">