Разложим знаменатель первой дроби на множители:
Тогда по теореме о разложении квадратного трехчлена на множители:
Неравенство примет вид:
Заметим, что ОДЗ выражения в левой части неравенства исключает два значения х: х ≠ 3 и х ÷ -2. Теперь сократим дробь:
![image](https://tex.z-dn.net/?f=0%2C2x+%2B+0%2C5+-+%5Cfrac%7B9%7D%7Bx-3%7D+%5Cgeq+0+%5C%5C++%0A%5Cfrac%7B%280%2C2x+%2B+0%2C5%29%28x-3%29-9%7D%7Bx-3%7D+%5Cgeq+0+%5C%5C+%0A%5Cfrac%7B0%2C2x%5E%7B2%7D-0%2C6x%2B0%2C5x-1%2C5-9%7D%7Bx-3%7D+%5Cgeq+0+%5C%5C+%0A%5Cfrac%7B0%2C2x%5E%7B2%7D-0%2C1x-10%2C5%7D%7Bx-3%7D+%5Cgeq+0+%5C%5C+%0A+%5Cleft+%5C%7B+%7B%7B+0%2C2x%5E%7B2%7D-0%2C1x-10%2C5%5Cgeq+0%7D+%5Catop+%7B+x-3%3E0%7D%7D+%5Cright.+%5C%5C+%0A%0A)
0}} \right. \\
" alt="0,2x + 0,5 - \frac{9}{x-3} \geq 0 \\
\frac{(0,2x + 0,5)(x-3)-9}{x-3} \geq 0 \\
\frac{0,2x^{2}-0,6x+0,5x-1,5-9}{x-3} \geq 0 \\
\frac{0,2x^{2}-0,1x-10,5}{x-3} \geq 0 \\
\left \{ {{ 0,2x^{2}-0,1x-10,5\geq 0} \atop { x-3>0}} \right. \\
" align="absmiddle" class="latex-formula">
или
Найдем нули трехчлена
![image](https://tex.z-dn.net/?f=%5Cleft+%5C%7B+%7B%7B+2%28x-7%2C5%29%28x%2B7%29++%5Cgeq++0%7D+%5Catop+%7B+x-3%3E0%7D%7D+%5Cright.+%5C%5C%0A)
0}} \right. \\
" alt="\left \{ {{ 2(x-7,5)(x+7) \geq 0} \atop { x-3>0}} \right. \\
" align="absmiddle" class="latex-formula">
\\\\\\\\\\\\\\\\\\\ /////////////////////
__________-7______________3_____________7,5_________
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
=>
ИЛИ
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
__________-7__________________3_____________7,5_________
////////////////////////////////////////////////////////////
=>
ОТВЕТ: [ - 7 ; 3) U [7,5 ; + оо )