Пусть а - ребро двугранного угла, А - точка в одной грани.
Проведем АН - перпендикуляр к другой грани угла и АК⊥а.
КН - проекция наклонной АК на плоскость α. Так как АК⊥а, то и КН⊥а по теореме, обратной теореме о трех перпендикулярах.
∠АКН = 45° - линейный угол данного двугранного угла.
ΔАКН: ∠АНК = 90°, ∠АКН = 45°, АН = 5√2 см.
sin∠AKH = AH / AK
AK = AH / sin∠AKH = 5√2 / (√2/2) = 5 см