За одну секунду свободного падения, шарик пролетит расстояние
h = gt2/2 (1)
и столкнется с плитой. После отскока, шарик будет двигаться под углом α = 30о к перпендикуляру, восстановленному в точку падения, под таким же углом к горизонтальной оси.
Чтобы тело оказалось на плоскости в точке падения шарика, его надо бросить из точки А
со скоростью vo. Воспользуемся законом сохранения механической энергии
mvo2/2 = mg(H − h) + mv2/2. (2)
Скорость отскока шарика от плоскости, равна скорости его падения на плоскость
v = gt, a v2 = g2t2. (3)
Сделав замену в уравнение (2) выразим квадрат скорости vo
vo2 = g2t2 + 2g(H − h). (4)
Учтем, что горизонтальная составляющая скорости в процессе полета остается постоянной
vx = vcos(90° − 2α) = vsin2α, (5)
запишем закон сохранения для точки A
и B
mvo2/2 = mgh/ + mvx2/2. (6)
Подставим (1), (3), (4) и (5) в формулу (6) и после преобразования получим формулу для искомой высоты
h/ = H − (gt2/2)•sin22α
Подставим численные значения и найдем искомую высоту
h/ = 20 − (10•12/2)•sin260° = 16,25 (м).