На каком предельном расстоянии может быть обнаружена на поверхности моря щель корабельным радиолокатором, расположенным на высоте 8 м над уровнем моря? Каким должен быть минимальный промежуток времени между соседними импульсами у такого локатора?
Пусть h- высота антены тогда по теореме Пифагора (R+h)^2=L^2+R^2 L=√R²+2*R*h+h²-R²=√2*R*h +h² так как h²<<2*R*h<br>L=√2*R*h=√2*6370*0,008=10,1 км пока не вернулся один сигнал нельзя посылать другой Δt=2*L/c=20,2/3*10^5=6,73*10^-5 с
R(1/cos(fi)-1)=H cos(fi)=1/(1+H/R) sin(fi)=корень(1-1/(1+H/R)^2) S=R*tg(fi)=R*корень((1+H/R)^2-1)=R*корень((1+H/R)^2-1)=6400000*корень((1+8/6400000)^2-1)= 10119,29 м ~ 10,12 км T > 2S/v=2*10119,29/340,29 сек = 59,47451 сек ~ 1 мин
))) я лох, простите люди добрые, подставил в формулу скорость звука ))) надо было скорость света !!!!
первая часть верно T > 2S/с = 2*10119,29/300000000 сек=6,74619E-05 сек