составьте уравнение касательной к графику функции f(x)=x^2-3 перпендикулярной прямой...

0 голосов
174 просмотров

составьте уравнение касательной к графику функции f(x)=x^2-3 перпендикулярной прямой g(x)=x+3


Математика (20 баллов) | 174 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

Пусть A(x_0, y_0) - точка касания.

Составим уравнение касательной:

f(x_0)=x_0^2-3\\f'(x_0)=2x_0\\y=x_0^2-3+2x_0(x-x_0)=x_0^2-3+2x_0x-2x_0^2=2x_0x-x_0^2-3

Угловой коэффициент прямой, перпендикулярной x+3 будет равен -1 (-1/k).

То есть 2x_0x=-x\Rightarrow x_0=-\frac12

Тогда уравнение касательной к f(x), перпендикулярной g(x) будет иметь вид

\y=2x_0x-x_0^2-3=-x-(-1)^2-3=-x-1-4=-x-4

y=-x-4

(317k баллов)