1) = (5²/2 - 5*5) - (3²/2 - 3*5) = -
25/2 + 10,4 = - 2,1
2) log₂² (x + 1) - 4log₂ (x + 1) + 3 = 0
ОДЗ: x + 1 > 0, x > - 1, x ∈ (- 1; +∞)
log₂ (x + 1) = t
t² - 4t + 3 = 0
t₁ = - 3
t₂ = - 1
a) log₂ (x + 1) = - 3
x + 1 = 2⁻³
x = 1/8 - 1
x₁ = - 7/8
b) log₂ (x + 1) = - 1
x + 1 = 2⁻¹
x = 1/2 - 1
x₂ = - 1/2