Найдите площадь трапеции, если её диагонали равны 3 и 5, а отрезок, соединяющий середины...

0 голосов
40 просмотров

Найдите площадь трапеции, если её диагонали равны 3 и 5, а отрезок, соединяющий середины оснований равен2


Геометрия (22 баллов) | 40 просмотров
Дан 1 ответ
0 голосов

задача решается очень элегантным дополнительным построение

пусть трапеция АВСD. АС = 3; ВD = 5; AD и ВС - основания.

Через точку D проводим прямую II АС до пересечения с продолжением AD. Точка пересечения - E. Площадь треугольника ACE равна площади трапеции (у них общая высота и одинаковая средняя линяя, поскольку АЕ = AD + BC.

Отрезок, соединяющий середины оснований, проходит через точку пересечения диагоналей О. Собственно, из подобия АОD и BOC следует, что медианы из точки О в обоих треугольниках составляют одинаковые углы с основаниями, то есть  это - одна прямая, соединяющая середины оснований. Треугольник  АСЕ Тоже подобен  АОD и BOC, и поэтому медиана в нем II этому отрезку. А значит, она ему равна :). 

Итак, Площадь треугольника ACE равна площади трапеции, и в АСЕ известны 2 стороны 3 и 5 и медиана 2.  Продолжим медиану СМ за её основание М на 2 и соединим полученную точку Р с A и Е. Получим параллелограмм ACEP. Ясно из свойств параллелограма что площадь АСЕ = площадь CPE.

СРЕ - треугольник с заданными сторонами РЕ = 5, СЕ = 3, СР = 2*2 = 4.

Найти его площадь в общем случае можно по формуле Герона, но тут все просто - треугольник СРЕ прямоугольный (это просто следствие того что 9 + 16 = 25), и его площадь S = (1/2)*3*4 = 6.

 

Удивительно, ввел решение, и увидел, что задачу решили так же как и я :)))) это приятно :)