![image](https://tex.z-dn.net/?f=a%29%5C%3B+x%5E%7B%5Cfrac%7B1%7D%7B2%7D%7D-7x%5E%7B%5Cfrac%7B1%7D%7B4%7D%7D%2B6%3C0%5C%5C%5C%5Ct%3Dx%5E%7B%5Cfrac%7B1%7D%7B4%7D%7D%2C%5C%3B+%5C%3B+t%5E2-7t%2B6%3C0%5C%5C%5C%5Ct_1%3D1%2C%5C%3B+t_2%3D6%5C%5C%5C%5C%2B%2B%2B%281%29---%286%29%2B%2B%2B%5C%5C%5C%5C+%5Cleft+%5C%7B+%7B%7Bt%3E1%7D+%5Catop+%7Bt%3C6%7D%7D+%5Cright.+%5C%3B++%5Cleft+%5C%7B+%7B%7Bx%5E%7B%5Cfrac%7B1%7D%7B4%7D%7D%3E1%7D%7D+%5Catop+%7Bx%5E%7B%5Cfrac%7B1%7D%7B4%7D%7D%3C6%7D%7D%7D+%5Cright.+%5C%3B++%5Cleft+%5C%7B+%7B%7Bx%3E1%7D+%5Catop+%7Bx%3C6%5E4%7D%7D+%5Cright.+%5C%3B+x%5Cin+%281%2C1296%29%5C%5C%5C%5Cb%29%5C%3B++%5Cfrac%7Bx%5E%7B%5Cfrac%7B4%7D%7B3%7D%7D-4%7D%7Bx%5E%7B%5Cfrac%7B2%7D%7B3%7D%7D%2B2%7D-%5Cfrac%7Bx%5E%7B%5Cfrac%7B2%7D%7B3%7D%7D-1%7D%7Bx%5E%7B%5Cfrac%7B1%7D%7B3%7D%7D-1%7D%3C3%2C%5C%3B+x%5Cne+1%5C%5C%5C%5C%5Cfrac%7B%28x%5E%7B%5Cfrac%7B2%7D%7B3%7D%7D-2%29%28x%5E%7B%5Cfrac%7B2%7D%7B3%7D%7D%2B2%29%7D%7Bx%5E%7B%5Cfrac%7B2%7D%7B3%7D%7D%2B2%7D-%5Cfrac%7B%28x%5E%7B%5Cfrac%7B1%7D%7B3%7D%7D-1%29%28x%5E%7B%5Cfrac%7B1%7D%7B3%7D%7D%2B1%29%7D%7Bx%5E%7B%5Cfrac%7B1%7D%7B3%7D%7D-1%7D%3C3%5C%5C%5C%5Cx%5E%7B%5Cfrac%7B2%7D%7B3%7D%7D-2-x%5E%7B%5Cfrac%7B1%7D%7B3%7D%7D-1%3C3%5C%5C%5C%5Ct%3Dx%5E%7B%5Cfrac%7B1%7D%7B3%7D%7D%2Ct%5E2-t-6%3C0%5C%5C%5C%5C-2%3Ct%3C3%5C%5C%5C%5Cx%5E%7B%5Cfrac%7B1%7D%7B3%7D%7D%3E-2%2Cx%3E%28-2%29%5E3%2Cx%3E-8%5C%5C%5C%5Cx%5E%7B%5Cfrac%7B1%7D%7B3%7D%7D%3C3%2Cx%3C3%5E3%2Cx%3C27%5C%5C%5C%5Cx%5Cin+%28-8%2C1%29U%281%2C27%29)
1} \atop {t<6}} \right. \; \left \{ {{x^{\frac{1}{4}}>1}} \atop {x^{\frac{1}{4}}<6}}} \right. \; \left \{ {{x>1} \atop {x<6^4}} \right. \; x\in (1,1296)\\\\b)\; \frac{x^{\frac{4}{3}}-4}{x^{\frac{2}{3}}+2}-\frac{x^{\frac{2}{3}}-1}{x^{\frac{1}{3}}-1}<3,\; x\ne 1\\\\\frac{(x^{\frac{2}{3}}-2)(x^{\frac{2}{3}}+2)}{x^{\frac{2}{3}}+2}-\frac{(x^{\frac{1}{3}}-1)(x^{\frac{1}{3}}+1)}{x^{\frac{1}{3}}-1}<3\\\\x^{\frac{2}{3}}-2-x^{\frac{1}{3}}-1<3\\\\t=x^{\frac{1}{3}},t^2-t-6<0\\\\-2<t<3\\\\x^{\frac{1}{3}}>-2,x>(-2)^3,x>-8\\\\x^{\frac{1}{3}}<3,x<3^3,x<27\\\\x\in (-8,1)U(1,27)" alt="a)\; x^{\frac{1}{2}}-7x^{\frac{1}{4}}+6<0\\\\t=x^{\frac{1}{4}},\; \; t^2-7t+6<0\\\\t_1=1,\; t_2=6\\\\+++(1)---(6)+++\\\\ \left \{ {{t>1} \atop {t<6}} \right. \; \left \{ {{x^{\frac{1}{4}}>1}} \atop {x^{\frac{1}{4}}<6}}} \right. \; \left \{ {{x>1} \atop {x<6^4}} \right. \; x\in (1,1296)\\\\b)\; \frac{x^{\frac{4}{3}}-4}{x^{\frac{2}{3}}+2}-\frac{x^{\frac{2}{3}}-1}{x^{\frac{1}{3}}-1}<3,\; x\ne 1\\\\\frac{(x^{\frac{2}{3}}-2)(x^{\frac{2}{3}}+2)}{x^{\frac{2}{3}}+2}-\frac{(x^{\frac{1}{3}}-1)(x^{\frac{1}{3}}+1)}{x^{\frac{1}{3}}-1}<3\\\\x^{\frac{2}{3}}-2-x^{\frac{1}{3}}-1<3\\\\t=x^{\frac{1}{3}},t^2-t-6<0\\\\-2<t<3\\\\x^{\frac{1}{3}}>-2,x>(-2)^3,x>-8\\\\x^{\frac{1}{3}}<3,x<3^3,x<27\\\\x\in (-8,1)U(1,27)" align="absmiddle" class="latex-formula">