В правильной пирамиде SABC R- середина ребра BC, S-вершина. Известно что AB=8, а площадь боковой поверхности равна 252. Найдите длину отрезка SR
В правильной пирамиде все грани равны.
Площадь одной грани Sграни=SR·CR Sграни=Sбок:3
Стороны АВС равны. Sграни=SR·CR CR=AB:2=8:2=4
S бок=SR·CR·3 SR=S бок:(3·CR) 252=SR·4·3 SR=252:12
SR=21
SR - апофема пирамиды. Площадь боковой поверхности состоит из суммы площадей 3-х равных треугольников, которые являются боковыми гранями пирамиды. То есть . В данном случае речь идет о треугольнике BSC. так как площади треугольников равны, то можно записать в следующем виде Делим обе части на 3. . Так как треугольник BSR - равнобедренный (из того, что пирамида -правильная), то его площадь равна произведению половины основания BC на высоту SR. Так как пирамида правильная, то AB=BC.
. Делим обе части уравнения на 4. , то есть SR=21.