Суммы противоположных сторон этой трапеции равны. Поэтому средняя линия равна боковой стороне. Высота трапеции равна 2R, поэтому
(a + b)/2 = S/(2R);
это - и полусумма оснований, и боковая сторона.
Если теперь опустить перпендикуляр из вершины меньшего основания на большее, то она разобьет основание на отрезки, равные (a - b)/2 и (a + b)/2;
(говоря на правильном математическом жаргоне, проекция боковой стороны равнобедренной трапеции на основание равна (a - b)/2, это легко увидеть, если провести высоты из обеих вершин меньшего основания, между концами высот будет отрезок b, два других равны между собой, то есть (a - b)/2;)
Отсюда (a - b)/2 = √((S/2R)^2 - (2R)^2);
Складывая эти два равенства, легко найти a = S/(2R) + √((S/2R)^2 - (2R)^2);
ну, и b = S/(2R) - √((S/2R)^2 - (2R)^2);