Докажите, что треугольник является прямоугольным, если его стороны пропорциональны числам...

0 голосов
203 просмотров

Докажите, что треугольник является прямоугольным, если его стороны пропорциональны числам 5, 12 и 13.


Геометрия (17 баллов) | 203 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

Пусть х - коэффициент пропорциональности.
Тогда стороны треугольника:
5х, 12х, 13х.
По теореме, обратной теореме Пифагора:
если в треугольнике квадрат большей стороны равен сумме квадратов двух других сторон, то треугольник прямоугольный.
Проверим:
(13x)²  = (5x)² + (12x)²
169x² = 25x² + 144x²
169x² = 169x² - верно, значит треугольник со сторонами, пропорциональными числам 5, 12, 13 - прямоугольный.

(80.1k баллов)