Умножим обе части на не отрицательную 2|x+4|, получим
14x-16>=|x-4||x+4|
Но |x-4||x+4|=|(x-4)(x+4)|
Тогда 14x-16>=|x^2-16|
14x-16-|x^2-16|>=0
Рассмотрим 2 промежутка
1) -4<=x<=4</p>
На этом промежутке x^2-16 не положительное число, тогда
14x-16+x^2-16>=0
x^2+14x-32>=0
Решением этого неравенства и удовлетворяющий условию -4<=x<=4 является отрезок [2;4]</p>
Это первая часть решения
2) Рассмотрим случай когда x<-4 либо x>4
На этом промежутке x^2-16 положительный, тогда
14x-16-x^2+16>=0
x^2-14x=<0</p>
Решением этого неравенства и удовлетворяющий условию -4>x, либо x>4 является интервал (4;14]
Обьединяя 2 множества решений, получаем
x принадлежит [2;14]