\cup <5,\infty) \wedge x\leq 8\\ x\in(-\infty,-2>\cup <5,8>\\\\ x^2-3x-10<(8-x)^2\\ x^2-3x-10<64-16x+x^2\\ 13x<74\\ x<\frac{74}{13}\\\\ x\in(-\infty,-2>\cup <5,8> \wedge x<\frac{74}{13}\\ \underline{x\in(-\infty,-2>\cup <5,\frac{74}{13})} " alt=" \\\sqrt{x^2-3x-10}<8-x\\ x^2-3x-10\geq0 \wedge 8-x\geq0\\ x^2+2x-5x-10\geq 0\wedge -x\geq -8\\ x(x+2)-5(x+2)\geq 0 \wedge x\leq 8\\ (x-5)(x+2)\geq 0 \wedge x\leq 8\\ x\in(-\infty,-2>\cup <5,\infty) \wedge x\leq 8\\ x\in(-\infty,-2>\cup <5,8>\\\\ x^2-3x-10<(8-x)^2\\ x^2-3x-10<64-16x+x^2\\ 13x<74\\ x<\frac{74}{13}\\\\ x\in(-\infty,-2>\cup <5,8> \wedge x<\frac{74}{13}\\ \underline{x\in(-\infty,-2>\cup <5,\frac{74}{13})} " align="absmiddle" class="latex-formula">