Окружность с центром О₁ касается прямой в точке А, радиус окружности О₁А=О₁К.
Окружность с центром О₂ касается прямой в точке В, радиус окружности О₂В=О₂К.
Через точку К проведем общую касательную к 2 окружностям, которая пересекает АВ в точке Е.
а) Если к окружности из одной точки проведены две касательных, то длины отрезков касательных от этой точки до точек касания с окружностью равны.
Значит АЕ=ЕК и ВЕ=ЕК, тогда АЕ=ВЕ.
Получается, что ЕК - медиана ΔАВК и ЕК=АВ/2, значит ΔАВК прямоугольный (угол АКВ - прямой)
Следовательно, прямые ВД и АС пересекаются под прямым углом, значит вписанные <АКД=<ВКС=90°. А т.к. вписанный угол является прямым углом, тогда и только тогда, когда он опирается на диаметр, то значит АД и ВС - это диаметры окружностей.<br>Касательная перпендикулярна к радиусу окружности, проведённому в точку касания, тогда АД ⊥АВ, ВС⊥АВ.
Значит АД || ВС (две прямые, перпендикулярные третьей прямой, параллельны), ч.т.д.
б) По условию радиус окружности О₁А=О₁К=1, а радиус окружности О₂В=О₂К=4.
Диаметры АД=2, ВС=8
Прямоугольные ΔАКД и ΔСКВ подобны по острому углу (<ДАК=<ВСК как накрест лежащие при пересечении параллельных прямых АД и ВС секущей АС).<br>Значит АК/КС=ДК/КВ=АД/ВС=2/8=1/4
Из прямоугольного ΔДАВ, в котором АК - высота из прямого угла на гипотенузу ВД:
АК²=ДК*КВ=ДК*4ДК=4ДК²
АК=2ДК
Из прямоугольного ΔДАК:
АД²=ДК²+АК²=ДК²+4ДК²=5ДК²
ДК=АД/√5=2/√5
АК=4/√5
КС=4АК=16/√5
Площадь Sдак=АК*ДК/2=4/√5 * 2/√5 / 2=4/5
У ΔДАК и ΔДАС одинаковые высоты из вершины, значит их площади Sдак/Sдас=АК/АС=4/√5 / 20/√5=1/5
Sдас=5Sдак=5*4/5=4
Sдкс=Sдас-Sдак=4-4/5=16/5=3,2
Ответ: 3,2