Находим производную:
Упростим.
Найдем периоды возрастания и убывания:
0\\ 1) \left \{ {{2x-23>0} \atop {39-6x>0}} \right.\\ \left \{ {{x>11,5} \atop {x<6,5}} \right.\\ 2) \left \{ {{2x-23<0} \atop {39-6x<0}} \right.\\ \left \{ {{x<11,5} \atop {x>6,5}} \right.\\ 6,50\\ 1) \left \{ {{2x-23>0} \atop {39-6x>0}} \right.\\ \left \{ {{x>11,5} \atop {x<6,5}} \right.\\ 2) \left \{ {{2x-23<0} \atop {39-6x<0}} \right.\\ \left \{ {{x<11,5} \atop {x>6,5}} \right.\\ 6,5
На промежутке от 6,5 до 11,5 функция возрастает, на остальном она убывает. Имеем две точки экстремума:
6,5 - точка минимума
11,5 - точка максимума.
У нас пулучается, что функция примет свое наименьшее значение в точке минимума, то есть в точке 6,5. Подставляем в функцию:
График для наглядности.
З.Ы. Здесь небольшой подвох есть. В точке х =14, у тоже будет равен -245. Поскольку, в рассматриваемом промежутке [0; 14), точка 14 не включена, то тогда мы не берем ее в расмотрение.