Вычислить значение выражения sin5x - sin3x , если sinx = 2/√5Можете еще пожалуйста...

0 голосов
19 просмотров

Вычислить значение выражения sin5x - sin3x , если sinx = 2/√5Можете еще пожалуйста написать использованные формулы, спасибо.


Алгебра (15 баллов) | 19 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

Формула: sin a - sin b = 2sin((a-b)/2)*cos((a+b)/2)
sin 5x - sin 3x = 2sin(2x/2)*cos(8x/2) = 2sin x*cos 4x
Формула: cos 4x = cos(2(2x)) = 2cos^2 (2x) - 1 = 2(1 - 2sin^2 x)^2 - 1 =
= 2(4sin^4 x - 4sin^2 x + 1) - 1 = 8sin^4 x - 8sin^2 x + 1
Подставляем
2sin x*cos 4x = 2sin x*(8sin^4 x-8sin^2 x+1) = 16sin^5 x-16sin^3 x+2sin x =
= 16*32/(√5^5) - 16*8/√5^3 + 2*2/√5 = 512/(25√5) - 128/(5√5) + 4/√5 =
= (512√5 - 128*5√5 + 4*25√5)/(25*5) = -28√5/125

(320k баллов)