Задача. Ромб. Сторона ромба образует с его диагоналями углы, разность которых равна 15...

0 голосов
57 просмотров

Задача. Ромб.




Сторона ромба образует с его диагоналями углы, разность которых равна 15 градусов. Найдите углы ромба.


Геометрия (232 баллов) | 57 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

Диагонали ромба пересекаются под прямым углом, образуя четыре одинаковых прямоугольных треугольника, один уз углов которых равен 90°.
Пусть х - один острый угол, тогда х + 15 - другой острый угол.
Т.к. сумма углов Δ равна 180°, получаем:
х + х + 15 + 90 = 180
2х + 105 = 180
2х = 180 - 105
2х = 75
х = 75 : 2
х = 37,5⁰ - один угол.
37,5 + 15 = 52,5⁰ - другой угол.
Найдём углы ромба:
37,5 · 2 = 75⁰ - один угол.
52,5 · 2 = 105⁰ - другой угол.
Ответ: 75⁰ и 105°.

(48.8k баллов)