Отрезок, соединяющий середины M и N оснований соответственно BC и AD трапеции ABCD,...

0 голосов
131 просмотров

Отрезок, соединяющий середины M и N оснований соответственно BC и AD трапеции ABCD, разбивает ее на 2 трапеции, в каждую из которых можно вписать окружность. а) Докажите, что трапеция ABCD равнобедренная;
б) Известно, что радиус этих окружностей=3, а меньшее основание BC исходной трпаеции равно 8. Найдите радиус окружности, касающейся боковой стороны AB, основания AN и вписанной в нее окружности.


Геометрия (15 баллов) | 131 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

А)в четырехугольник можно вписать окружность когда сумма длин противоположных сторон равна
то есть (ВС/2)+(AN/2)=MN+AB
также (ВС/2)+(AN/2)=MN+СD
AB=CD =>трапеция равнобокая

б)BE=1=BS
BO^2=BE^2+EO^2=10
BO=sqrt{10}
BO-биссектриса АВМ
АО-биссектриса ВАN
АВМ+ВАN=180
=>OBA+BAO=90
=>BOA=90
из подобия треугольников BOS и BAO
BS/BO=SO/AO
AO=3sqrt{10}
Из подобия треугольников AOQ и APT
OQ/PT=OA/AP
Пусть r- радиус искомой окружности
r=PT
3/r=(3sqrt{10})/(3sqrt{10}-3-r)
r=3(sqrt{10}-1)/(sqrt{10}+1)=(11-2sqrt{10})/3



image
(11.9k баллов)
0

Объясните последние две строчки пожалуйста

0

sqrt - корень квадратный, sqrt{10} - корень квадратный из 10
я просто тогда ещё не знал что корень на этом сайте можно как корень писать