Прямоугольный треугольник АВС, угол С=90°
Биссектриса СН делит угол С на два равных АСН и ВСН по 45°
Биссектриса АК делит угол А на два равных САК и ВАК
При пересечении АК и СН (точка персечения О) образуется угол АОН=54°, следовательно вертикальный с ним угол СОК тоже равен 54°, а смежные с ним углы АОС и НОК равны по 180-54=126°.
Из треугольника АОС найдем угол САО, он же САК:
угол САО=180-45-126=9°.
Значит острый угол А (АК-биссектриса) равен 2*9=18°
Тогда второй острый угол В= 180-90-18=72°
Ответ: 18 и 72