Рассмотрим один из треугольников, образованных диагональю:
а + b = 17 сумма катетов - это полупериметр из заданного периметра = 34
a² + b² = 13² по теореме Пифагора, где заданная диагональ является гипотенузой рассматриваемого треугольника, далее решаем:
b = 17 - a
Подставляем a² = 169 - (17 - a)²
Решаем a² = 169 - (289 - 34a + a²)
2a² - 34a + 120 = 0
a² - 17a + 60 = 0 далее вытаскиваем корни, это X, = 12 и Х,, = 5
Подходят оба, если a = 12, то b = 5 и наоборот
Значит площадь прямоугольника равна произведению сторон, т.е.
12 х 5 = 60 (м²)