Обозначим стороны меньшего треугольника за a, b ,c . Тогда стороны большего будут ka,kb,kc.
a+b+c=24
k(a+b+c)=36
разделим второе уравнение на первое:
k=36/24 = 3/2
Квадрат коэффициента подобия будет равен отношению площадей подобнх треугольников. Обозначим площадь меньшего треугольника за х, тогда площадь второго будет х+10
(x+10)/x=9/4
По основному свойству пропорции:
4x+40=9x
5x=40
x=8
Значит площадь меньшего треугольника равна 8.
Ответ: 8