AD=DB, т.к. CD-медиана, AD=CD по условию задачи. Следовательно, CD=DB, и треугольник CDB - тоже равнобедренный. Треугольник ACD - равнобедренный с основанием CA, следовательно углы DAC и ACD равны, пусть они будут равны х градусов. Треугольник CDB - равнобедренный с основанием BC, следовательно, углы DBC и DCB равны, пусть они будут равны у градусов. Получаем, что угол А треугольника ABC равен х градусов, угол В треугольника ABC равен y градусов, а угол C треугольника ABC (угол ACB) равен (х+у) градусов, как сумма углов ACD и DCB. Так как сумма всех углов треугольника равна 180 градусов, получаем уравнение
x+y+(x+y)=180
2(x+y)=180
x+y=90
Так как х+у равен углу ACB, то задача решена.
Ответ: 90 градусов.