1) Найдем производную от данной функции
2)Найдем критические точки:
cos x = \frac{\sqrt{2}}{2} \\ <=> x = \pi + 2 \pi k\\ x = \frac{3\pi}{4} + 2 \pi n" alt="\frac{2}{cos^{2}x} - 4 = 0 \\ => cos x = \frac{\sqrt{2}}{2} \\ <=> x = \pi + 2 \pi k\\ x = \frac{3\pi}{4} + 2 \pi n" align="absmiddle" class="latex-formula">
3)Найдем корни из заданного промежутка :
a) k = 0\\ => x = \frac{\pi}{4}" alt="-\frac{\pi}{3} \leq \frac{\pi}{4} + 2\pi k\leq \frac{\pi}{3}| - \frac{\pi}{4}; :2\pi\\ -\frac{7}{24} \leq k \leq \frac{1}{24}\\ => k = 0\\ => x = \frac{\pi}{4}" align="absmiddle" class="latex-formula">
b) n = 0\\ => x = \frac{3\pi}{4}" alt="-\frac{\pi}{3} \leq \frac{3\pi}{4} + 2\pi n\leq \frac{\pi}{3}| - \frac{3\pi}{4}; :2\pi\\ -\frac{13}{24} \leq n \leq -\frac{5}{24}\\ => n = 0\\ => x = \frac{3\pi}{4}" align="absmiddle" class="latex-formula">
4) Из двух найденных корней видно, что y_{min} = 2 \cdot tg\frac{\pi}{4} - 4\frac{\pi}{4} + \pi - 3 = -1" alt="x_{min} = \frac{\pi}{4}\\ => y_{min} = 2 \cdot tg\frac{\pi}{4} - 4\frac{\pi}{4} + \pi - 3 = -1" align="absmiddle" class="latex-formula">
Ответ: -1