1-2sin^2x/2 - sin2x/2sinx= cos^4t-sin^4(t+п)/ctgt-sin2t=

0 голосов
134 просмотров

1-2sin^2x/2 - sin2x/2sinx=

cos^4t-sin^4(t+п)/ctgt-sin2t=


Алгебра (341 баллов) | 134 просмотров
Дан 1 ответ
0 голосов

sin 2x = 2 sinx * cos x
выносим из числителя 2 sinx. lim(x->0) 2 sinx/ х = 2
осталось вычислить lim(x->0) [cos x - 1 ] / ln cos(5x) неопределенность 0 на 0.
Проще всего по Лопиталю - вычислить производные числителя и знаменателя
Без Лопиталя
cos x -1 = - 2 sin^2 (x/2)
ln cos(5x) = ln [1+ ( cos 5x - 1) ] = ln [ 1- 2 sin^2 (5x/2) ]
---> - 2 sin^2 (5x/2)
после подстановки имеем
lim(x->0) { - 2 sin^2 (x/2) } / { - 2 sin^2 (5x/2) } = lim(x->0) { x^2/4 * [ sin^2 (x/2) / (x/2)^2} / { 25 x^2/4 * [sin^2 (5x/2)/(5x/2)^2 }=
= lim(x->0) { x^2 / 25 x^2 } =1/25

[ sin^2 (x/2) / (x/2)^2}=1 [sin^2 (5x/2)/(5x/2)^2 =1

 

 

 

 

 

 1+ (cos^4t+sin^2tcos^2t)/sin^2t=1/sin^2t 1+ cos^2t(cos^2t+sin^2t)/sin^2t=1/sin^2t 1+ cos^2t/sin^2t=1/sin^2t (cos^2t+sin^2t)/sin^2t =1/sin^2t 1/sin^2t =1/sin^2t 1=1 тождество доказано.

 

 

(226 баллов)