Решим эту задачу, применив теорему косинусов: a2= b2+ c2−2bc ·cos(A);
Где а=DN;b=CD; и c=CN; cosA=cos60*
CD дано по условию и равно 8;
CN также дано по условию и равно 6;
cosA тоже известен равно 1/2;
Остается найти DN; Имеем четырехугольник NDEM у которого стороны DE||NM По условию; а стороны DN||стороне ЕМ так как они равно удалены от точек С и К ромбаCDEK;
Подставляя значения чисел получим:
64+36- 2*8*6/2=100-48=52;
То есть DN^2=52;
DN=\/52=2\/13;
Вычислим периметр фигуры: Р=
(2\/13+8)х2=4\/13+16;