Решите уравнение 10/x+10(1+9/х+9(1+8/х+8(...(1+1/х+1)...)))=11

0 голосов
54 просмотров

Решите уравнение 10/x+10(1+9/х+9(1+8/х+8(...(1+1/х+1)...)))=11


Математика (12 баллов) | 54 просмотров
Дан 1 ответ
0 голосов

Решите задачу:

\displaystyle \frac{10}{x}+10\left(1+\frac{9}{x}+9\left(1+\frac{8}{x}+8\left(\,\dotsc\,3\left(1+\frac{2}{x}+2\left(1+\frac{1}{x}+1\right)\right)\right)\right)\right)=11;

\displaystyle 10\left(\frac{1}{x}+1+9\left(\frac{1}{x}+1+8\left(\,\dotsc\,3\left(\frac{1}{x}+1+2\left(\frac{1}{x}+1+\frac{1}{x}+1\right)\right)\right)\right)\right)=11;

\displaystyle u=\frac{1}{x}+1;

\displaystyle 10\left(u+9\left(u+8\left(u+7\left(u+6\left(u+5\left(u+4\left(u+3\left(u+2\left(u+u\right)\right)\right)\right)\right)\right)\right)\right)\right)=11;
\displaystyle 10\left(u+9\left(u+8\left(u+7\left(u+6\left(u+5\left(u+4\left(u+3\left(u+4u\right)\right)\right)\right)\right)\right)\right)\right)=11;
\displaystyle 10\left(u+9\left(u+8\left(u+7\left(u+6\left(u+5\left(u+4\left(u+15u\right)\right)\right)\right)\right)\right)\right)=11;
\displaystyle 10\left(u+9\left(u+8\left(u+7\left(u+6\left(u+5\left(u+64u\right)\right)\right)\right)\right)\right)=11;
\displaystyle 10\left(u+9\left(u+8\left(u+7\left(u+6\left(u+325u\right)\right)\right)\right)\right)=11;
\displaystyle 10\left(u+9\left(u+8\left(u+7\left(u+1956u\right)\right)\right)\right)=11;
\displaystyle 10\left(u+9\left(u+8\left(u+13699u\right)\right)\right)=11;
\displaystyle 10\left(u+9\left(u+109600u\right)\right)=11;
\displaystyle 10\left(u+986409u\right)=11;
\displaystyle 9864100u=11;

\displaystyle u=\frac{11}{9864100};

\displaystyle \frac{1}{x}+1=\frac{11}{9864100};

\displaystyle \frac{1}{x}=\frac{11-9864100}{9864100}=-\frac{9864089}{9864100};

\displaystyle x=\boxed{-\frac{9864100}{9864089}}\phantom{.}.




(616 баллов)