Y=3/2x ln(e-1/3x) найти точки возрастания и убывания (расписать )

0 голосов
33 просмотров

Y=3/2x ln(e-1/3x) найти точки возрастания и убывания (расписать )


Алгебра (18 баллов) | 33 просмотров
Дан 1 ответ
0 голосов

Y = (3/2)*x*ln^(-1/3)x
Найдем точки разрыва функции.
x₁ = 1
1. Находим интервалы возрастания и убывания. Первая производная.
f`(x) = 3 / [2* (lnx)²/³ ] - 1 /[2*ln⁴/³(x)]
или
f`(x) = [3*lnx - 1] / [2*ln⁴/³(x)]
Находим нули функции.
Для этого приравниваем производную к нулю
3 ln(x) - 1 = 0
Откуда:
x₁ = e¹/³
(0 ;1)  f`(x) = 0
(1; e
¹/³)    f'(x) < 0 функция убывает
(e¹/³ ; +∞)  f'(x) > 0    функция возрастает
В окрестности точки x = e¹/³ производная функции меняет знак с (-) на (+). Следовательно, точка x = e¹/³ - точка минимума.



(61.9k баллов)