Диагонали ромба ABCD пересикаются в точчке О. Отрезки OF и OT- перпендикуляры,...

0 голосов
37 просмотров

Диагонали ромба ABCD пересикаются в точчке О. Отрезки OF и OT- перпендикуляры, проведённые к сторонам CD и BC соответственно. Вычеслите градусные меры углов треугольника TOF, если диагональ BD равна стороне DA(желательно решение с ресуноком)


Геометрия (57.1k баллов) | 37 просмотров
Дан 1 ответ
0 голосов

Итак, раз в условии сказано что BD равна стороне DA значит треугольник DВС равносторонний (у ромба все стороны равны). У равностороннего треугольника все углы равны 60 градусам, слудовательно угол СВD = 60 градусам. Поскольку треугольник ОFВ прямоугольный (ОF перпендткуляр к ВС), то значит угол FОВ = 180-90-60=30 градусов. Поскольку угол ВОС прямой, то угол FОС = 90-30 = 60 градусов. Т.к. угол ТОС = FОС, то угол FОТ = 2 * FОС = 2*60=120 градусов.

Если ОF и ОТ перпендикуляры (по условию задачи), значит они равны, следовательно треугольник FОТ - равносторонний. У равностороннего треугольника углы у основания равны. Значит угол ОFТ= углу ОТF и равен (180-120)/2=30 градусов.

Ответ FОТ = 120 градусов,  ОFТ= ОТF = 30 градусов


image
(4.1k баллов)