Основание правильной треугольной призмы АВСA1B1C1 – треугольник, длина стороны которого...

0 голосов
45 просмотров

Основание правильной треугольной призмы АВСA1B1C1 – треугольник, длина стороны которого равна 12 см. Вычислите расстояние от вершины В1 до середины медианы ВК треугольника АВС, если длина бокового ребра призмы равна 8 см.


Геометрия (14 баллов) | 45 просмотров
Дан 1 ответ
0 голосов

Правильная треугольная призма — призма, в основаниях которой лежат два правильных треугольника, а все боковые грани строго перпендикулярны этим основаниям
Найдем медиану ВК в равностороннем треугольнике со стороной а=12 см, она же является и биссектрисой и высотой, по т.Пифагора
ВК=√а²-(а/2)²=а√3/2=12√3/2=6√3
Середина медианы  - обозначим  точку О, значит ВО=ОК=6√3/2=3√3
Из прямоугольного треугольника В1ВО найдем расстояние В1О по т.Пифагора
В1О=
√В1В²+ВО²=√8²+(3√3)²=√64+27=√91≈9,54

(413 баллов)