трапецию ABCD, проводишь диагонали, О-точка их пересечения, из О к стороне AD проводишь перпендикуляр, причём угол AOD тоже прямой, найти площадь ABCD
Если диагонали трапеции пересекаются под углом 90 градусов, то такая трапеция равнобедренная. Пусть О- точка пересечения диагоналей. Рассмотрим треугольник ВОС. ВО=ОС=х. (<- угол) <ВОС=90 градусов. По т. Пифагора ВО^2+СО^2=ВС^2 <br>х^2+х^2=12^2 2х^2=144 х^2=144/2=72 х=sqrt(72)=6sqrt(2) ВО=ОС=6sqrt(2) см. Рассмотрим треугольник АОD. АО=ОD=у. <АОD=90 градусов. По т. Пифагора АО^2+DО^2=АD^2 <br>у^2+у^2=16^2 2у^2=256 у^2=256/2=128 у=sqrt(128)=8sqrt(2) АО=ОD=8sqrt(2) см. АС=АО+ОС= 8sqrt(2)+6sqrt(2)= 14sqrt(2). S=1/2АС*ВD*sin90=1/2*392*1=192