Пожалуйста помогите, срочно, а то я уже запуталась! DABC – тетраэдр, углы DBA=DBC=90, DB...

0 голосов
189 просмотров

Пожалуйста помогите, срочно, а то я уже запуталась! DABC – тетраэдр, углы DBA=DBC=90, DB = 6, AB = BC = 8, AC = 12. Постройте сечение тетраэдра плоскостью,
проходящей через середину ребра DB и параллельной плоскости ADC. Найдите площадь сечения.


Геометрия (186 баллов) | 189 просмотров
Дан 1 ответ
0 голосов

В этом тетраэдре грани ABD=CBD по двум катетам (АВ=СВ по условию, DB-общий, а угол В у них прямой).

Строим сечение. Точка Е-середина ребра DB. Сечение проходит параллельно плоскости ADC. Канты AD и CD принадлежат этой плоскости, значит сечение будет параллельно этим кантам. Возьмем грань CBD. Прямая, по которой будет проходить сечение, параллельна CD и проходит через середину DB (точку Е), будет средней линией для треуг. CBD. Значит на середине канта СВ отмечаем точку К и проводим прямую ЕК. Аналогично для грани ABD. Точка М - середина канта АВ. МЕК - искомое сечение. МЕК - равнобедренный треуг. МЕ=ЕК. МК - средняя линия для треуг. АВС. МК=АС/2=12/2=6

ЕК=√(КВ^2+EB^2), КВ=ВС/2=8/2=4,  ЕВ=DB/2=6/2=3.

ЕК=√(16+9)=5,  МЕ=ЕК=5, МК=6.

В треуг. МЕК проведем высоту ЕО (она же и медиана).

МО=ОК=МК/2=6/2=3

ЕО=√(25-9)=4

S(сечения МЕК)=1/2*ЕО*ОК=1/2*4*3=6

Ответ: 6

(10.6k баллов)